on terminal wiener indices of kenograms and plerograms
Authors
abstract
whereas there is an exact linear relation between the wiener indices of kenograms and plerograms of isomeric alkanes, the respective terminal wiener indices exhibit a completely different behavior: correlation between terminal wiener indices of kenograms and plerograms is absent, but other regularities can be envisaged. in this article, we analyze the basic properties of terminal wiener indices of kenograms and plerograms.
similar resources
On terminal wiener indices of kenograms and plerograms
Whereas there is an exact linear relation between the Wiener indices of kenograms and plerograms of isomeric alkanes, the respective terminal Wiener indices exhibit a completely different behavior: Correlation between terminal Wiener indices of kenograms and plerograms is absent, but other regularities can be envisaged. In this article, we analyze the basic properties of terminal Wiener indices...
full textComputing Wiener and hyper–Wiener indices of unitary Cayley graphs
The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.
full textA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
full textRelation Between Wiener, Szeged and Detour Indices
In theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. Among them Wiener, Szeged and detour indices play significant roles in anticipating chemical phenomena. In the present paper, we study these topological indices with respect to their difference number.
full textOn the edge reverse Wiener indices of TUC4C8(S) nanotubes
The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.
full textAltered Wiener Indices
Recently Nikolić, Trinajstić and Randić put forward a novel modification W(G) of the Wiener number W(G), called modified Wiener index , which definition was generalized later by Gutman and the present authors. Here we study another class of modified indices defined as Wmin,λ(G)=∑(V(G) mG(u,ν) −mG(u,ν) ) and show that some of the important properties of W(G), W(G) and W(G) are also properties of...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of mathematical chemistryPublisher: university of kashan
ISSN 2228-6489
volume 4
issue 1 2013
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023